md传媒破解版app免费版,无码日韩精品一区二区免费暖暖,99精品视频一区在线观看,高清一区二区三区日本

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時(shí)間:2021-11-30  |  點(diǎn)擊率:1932

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


日本动漫瀑乳h动漫啪啪免费| 在线a级毛片免费观看| 亚洲 欧美 自拍 另类 日韩| 两个人免费视频| 熟女少妇人妻中文字幕| 99久久精品费精品国产一区二| 国产性色强伦免费视频| 久久天天躁狠狠躁夜夜avapp| 亚洲av永久无码精品一福利| 免费网站观看www免费下载| 国产成人精品一区二区A片带套| 鸡毛飞上天电视剧全集观看免费| 欧美大屁股喷潮水xxxx| 亚洲欧美日韩精品久久亚洲区| 亚洲欧美日韩综合一区二区| AAA少妇高潮大片免费看| 十八18禁国产精品WWW| 久久av| 美女高潮黄又色高清视频免费| 野の欲求不満な人妻在线| 久久亚洲AV成人无码电影A片| 国产亚洲日韩一区二区三区| 精品视频无码一区二区三区| 成人免费视频| 欧美顶级少妇做爰HD| 中文av人妻av无码中文| 无码欧美毛片一区二区三 | 国产精品久久久久久久| 欧美FREESE黑又粗又大| 亚洲一区二区三区AV无码| 麻豆AV天堂一区二区香蕉| 人妻AⅤ无码一区二区三区 | 免费看大片的播放器| av鲁丝一区鲁丝二区鲁丝三区| 久久精品国产亚洲AV高清| 狠狠88综合久久久久综合网 | 亚洲中文字幕无码爆乳AV久久 | 久久黄色网站| 免费大黄网站| 黑色包臀裙秘书啪啪久久网站 | 美女黄网站成人免费视频|